青年创新奖名单
|
历届青年创新奖
焦远年,生于1982年1月。博士,中国科学院植物研究所研究员,博士生导师。2004年在中国农业大学获学士学位,2011年在美国宾夕法尼亚州立大学获博士学位。2011至2014年先后在宾夕法尼亚州立大学和佐治亚大学做博士后研究。2015年到中国科学院植物研究所系统与进化植物学国家重点实验室工作,同年获得“国家引进人才计划青年项目”资助。目前担任中国科学院大学岗位教授,《Frontiers in Plant Science》期刊副主编,《Journal of Systematics and Evolution》、《植物学报》期刊编委,中国植物学会系统与进化植物学专业委员会委员。主要围绕多倍化及其进化意义开展基础性研究工作,通过基因组学、生物信息学和进化生物学等多学科交叉手段,致力于揭示多倍化在花起源、植物适应性进化和作物驯化与改良等方面的进化意义。主要研究成果以第一作者或通讯作者身份在Nature、Nature Plants、Plant Cell、Genome Research、Molecular Plant、Genome Biology和New Phytologist等期刊上发表。 焦远年博士主要从事植物基因组进化方向的研究,在解析多倍化的发生及其进化意义等方面取得了一系列突出成绩。 1. 关键支系代表性物种基因组图谱的解析。通过木兰类植物流苏马兜铃全基因组的解析,揭示了木兰类植物的多倍化进化历史,发现了被子植物早期进化过程中的染色体重排事件,对木兰类植物的系统发育位置提出了新见解,阐明了马兜铃花特化和马兜铃酸合成的遗传基础。此外,还参与了包括无油樟、睡莲、节节麦、水青树、耧斗菜和荷花等10余种植物的基因组解析工作,积累植物宏观进化研究极其重要的基因组数据。 2. 多倍化事件的精准鉴定。通过开发整合基因组共线性、Ks和系统发育基因组学的新方法,提出了特别古老多倍化事件精准鉴定和时间定位的新思路,发现了分别位于现存种子植物和被子植物分化之前的两次多倍化事件,对理解种子植物和被子植物的起源及多样化的进化机制有重要意义。此外,鉴定和命名了单子叶植物早期分化时期发生的tau多倍化事件,还澄清了真双子叶植物分化早期gamma多倍化事件发生时间和过程的巨大争议。 3. 多倍化后基因组层面的主要进化规律和机制。基于比较基因组学、群体遗传学等方法,从陆地植物、禾本科植物和小麦三个不同尺度阐明了多倍化后基因组进化规律的普遍性和特异性,揭示了多倍化历史不同的水稻、高粱和玉米群体遗传革新和遗传多样性来源的差异性,并进一步探讨了小麦基因组中重复序列在基因组进化和表观遗传特征多样化中的贡献,对深入理解多倍化在群体遗传革新和生物多样性形成等方面具有重要意义。 4. 多倍化对植物适应性进化的意义。从生物大灭绝时期聚集发生的多倍化事件入手,阐明了相关重复基因的偏好性保留及其对环境适应性相关调控网络重塑的重要意义,揭示了多倍化帮助现存植物从生物大灭绝中幸存下来的重要遗传证据。进一步阐明了编码互作蛋白的基因家族进化历史,揭示了蛋白复合体各组分间维持剂量平衡的共进化策略。这些研究对于多倍化在基因剂量平衡、调控网络重塑和适应性进化中的作用提出了新见解。
Prof. Yuannian Jiao, Principle Investigator, PhD supervisor of the Institute of Botany, CAS. 2004, BSc, China Agricultural University, China; 2011, PhD, the Pennsylvania State University, USA. 2011-2014, Postdoctoral Research Fellow, the Pennsylvania State University and the University of Georgia, USA; 2015, joined Institute of Botany, CAS, and received the “National Young Talents Program”. He is also an adjunct professor of the University of Chinese Academy of Sciences, and servers as Associate Editor of Frontiers in Plant Science, and Board member of Journal of Systematics and Evolution and Chinese Bulletin of Botany, and member of the Systematic and Evolutionary Botany Committee of Botanical Society of China. His research interest is mainly about the polyploidy and its evolutionary significance, and he aims to utilize genomics, bioinformatics, and evolutionary biology approaches to reveal the significance of polyploidy in the origin of flower, plant adaptive evolution, and crop domestication and improvement. As the correspondence author or first author, he has published papers in many international high-profile journals such as Nature, Nature Plants, Plant Cell, Genome Research, Molecular Plant, Genome Biology and New Phytologist. Prof. Yuannian Jiao mainly focused on the areas of plant genome evolution. He has achieved many important progresses on the occurrence of polyploidy and its evolutionary significance in the past few years. 1. The genome sequencing of representative species from plant major clades. By deciphering the genome sequence of a magnoliid species Aristolochia fimbriata, he and his group identified two overlooked whole genome duplications (WGDs) in black pepper and clarified the other WGDs in magnoliids. The new genome data facilitated the identification of ancient genomic rearrangements suggesting the phylogenetic placement of magnoliids as sister to monocots. They also elucidated the genetic basis for the specialized flower development and aristolochic acid biosynthesis in A. fimbriata. In addition, he has also involved in more than 10 other plant genome sequencing projects, including the Amborella, water lily, Aegilops tauschii, Tetracentron, Aquilegia, sacred lotus, and these genomes severed as critical resources for plant genome evolution studies. 2. The precise identification of ancient polyploidy events. He developed new methods integrating genome collinearity, Ks, and phylogenomic evidences, which vastly increased the identification resolution of very ancient WGD. Using these novel approaches, he identified two ancient WGDs in the ancestor of extant seed plants and the ancestor of extant angiosperms, which help to understand the evolutionary mechanisms of the origin and diversification of seed plants and angiosperms. In addition, he identified and named the tau WGD event occurred during the early diversification of monocots, and also clarified the timing and nature of the gamma hexaploidization event before the diversification of core eudicots. 3. The investigation of genomic evolution after polyploidization events. He elucidated common patterns, as well as lineage-specific genomic changes, following ancient WGDs using the land plants, Poaceae, and Triticum-wide comparative genomic studies and population genomics. He also revealed diverse evolutionary mechanisms in contributing to genetic innovations and genetic diversity in sorghum, rice, and maize, given they experienced divergent history of WGDs. He further explored the role of repetitive sequences in wheat genome evolution and epigenetic diversification. These studies facilitated a better understanding of the contribution of WGDs to the population genetic innovations, biodiversity formation, and many others. 4. The significant contribution of polyploidy to adaptive evolution in plants. He elucidated the biased retention pattern of gene duplicates and their significant role in reshaping the adaptive regulatory networks after the independently occurred WGDs around the Cretaceous-Paleocene boundary, and provided genetic evidence supporting WGDs potentially helped the ancestors of extant plants survive the extinction event. Furthermore, he investigated the evolutionary history of two gene families encoding two interacting proteins, provided insights into the evolutionary strategies drive a gene dosage balance. These studies provide new insights into the contribution of genome duplications on the balanced gene dosage, gene regulatory network, and plant adaptive evolution.
|
版权所有 Copyright © 2015-2019 云南吴征镒科学基金会,All Rights Reserved 【滇ICP备05000394号】
地址:中国云南省昆明市蓝黑路132号 邮政编码:650201
点击这里联系我们